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1) Introduction

We are concerned with the numerical solution linear systems that arise from
a hybridization of the Finite Element Method (FEM) and the Boundary
Element Method (BEM). Our present focus is hybrid FEM-BEM
discretization of the frequency-domain vector Helmholtz equation of
electromagnetics, but similar hybrid techniques are used in electrostatics,
acoustics, elasticity, etc. The hybrid FEM-BEM technique is used to solve
“open” or “infinite” problems, where the FEM is used to discretize the
interior of the problem and the BEM is used to simulate the effect of the
infinite domain. This is illustrated generically in two dimensions in Figure 1
below. The FEM is applied to the interior V, the BEM is applied to the
fictitious surface S, and the two methods are appropriately coupled to form a
well-posed1 problem.

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

                                                          
1 A problem is well posed if 1) the solution exists, 2) the solution is unique, and 3) the solution depends
continuously upon the source and/or boundary conditions. This is distinct from well-conditioned.



Figure 1. Computational volume discretized with a finite element mesh

As a concrete example, a standard FEM approximation for the frequency
domain vector Helmholtz equation in an inhomogeneous volume V is given
by
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where Eint is the electric field in the interior, Hext is the magnetic field on the
surface, W is a finite element basis function (the test function), and fint

represents the application specific excitation. By itself equation (1) is of
little use since Hext is not known. A specific BEM known as the magnetic
field integral equation can be used to determine Hext,
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where Eext is the electric field on the surface, Q is a finite element basis
function, and G is the appropriate dyadic Green function. Different Green
functions are used for different exterior regions, i.e. vacuum, layered media,
random media, etc. Finally, equations (1) and (2) are coupled by equating
Eint with Eext on the surface,
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Approximating the fields Eint , Eext , and Hext in terms of basis function
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gives a system of linear equations Z x = y of dimension N = NEV+NES,+NHS
where NEV is the number of volume electric field unknowns, NES is the
number of surface electric field unknowns, and NHS is the number of surface
magnetic field unknowns. The above formulation is described in greater
detail in [1], and is an example of one of many different hybrid FEM-BEM
formulations recently added to LLNL’s EIGER code [2].

The system Z x = y is a hybrid sparse-dense linear system, the sparse part is
due to the FEM and the dense part is due to the BEM. This matrix is
complex valued, non-symmetric, indefinite, and ill-conditioned2. The
unknowns can be ordered such that the dense part is collected in the lower
right corner as shown in Figure 2 below. Figure 2 is somewhat misleading
because it is a relatively small problem; in general, as the mesh is refined the
dense block becomes proportionally smaller. Naturally the precise ratio of
the sizes of the dense and sparse blocks is problem specific, but for many
problems of interest the ratio is determined by the surface-to-volume ratio of
the mesh.

                                                          
2 The condition number of a matrix is χ Z Z Zb g = −1 1  where   ⋅  is your favorite consistent matrix
norm. A matrix with large condition number is said to be ill-conditioned. The condition number is related
to the spread in the spectrum of the matrix. Iterative methods typically take a very long time to converge
for ill-conditioned systems, and typically converge quite rapidly for well-conditioned systems.



Figure 2. Sparsity pattern for an example hybrid FEM-BEM matrix. This
particular problem had 2303 internal unknowns and 765 boundary
unknowns.

At present the EIGER code supports two methods for solving linear systems:
a direct LU decomposition [3] and the iterative BiCGStab method [4]. The
direct LU method requires approximately 1/3 N3 operations for a system of
dimension N. This operation count is problem independent. The
disadvantage of this direct method is that it does not take into account the
structure of the matrix; it requires a large amount of memory N2 and a large
number of operations 1/3 N3 regardless of the relative sizes of N N NEV ES HS, , .

The BiCGStab method is an example of a Krylov method, i.e. an iterative
method that requires only the action of the matrix on a vector (or perhaps
transpose operations as well). Krylov methods are ideal for sparse matrices
as matrix vector multiplication requires only O(N) operations. If few
iterations are required, this can be significantly more efficient than a direct
method. Even if a relatively large number of iterations are required, a Krylov
method is much more efficient than a direct solver in terms of memory
usage.

We applied BiCGStab to two hybrid problems. Problem #1 is the so-called
electromagnetic whistle, a hollow perfectly conducting sphere with a small



spherical aperture. This problem consisted of 2303 interior unknowns and
765 boundary unknowns. Problem #2 is a dielectric cone consisting of 1028
interior unknowns and 1344 boundary unknowns. Even though these
problems are of very modest dimension, BiCGStab failed to converge for
both problems3. The GMRES algorithm was converging, painfully slowly,
and was terminated after 10000 iterations. The GMRES without restart and
with full orthogonalization is guaranteed to converge (in exact arithmetic) in
N iterations, however without restarting this method is no more efficient
than a direct method. The QMR and CGS algorithms both converged for
both test problems, although the convergence was much slower than desired.
The convergence rates are shown in Figures 3 and 4.

There are several methods for improving the convergence of Krylov
methods. One approach is preconditioning the linear system. Instead of
solving the system Z x = y  for x, the modified system L Z x = L y is solved
for x, where the matrix L Z is better conditioned than the matrix Z alone.
This is one of many possible preconditioning strategies. The difficulty is
constructing a preconditioner that is both easy to compute and significantly
improves the conditioning of the linear system. We tried several “black box”
linear algebraic preconditioners such as Sparse Approximate Inverse and
Incomplete LU [4], however these had little effect upon the convergence.
We suspect that a special-purpose preconditioner that is based on the unique
characteristics of out problem will be required.

Another approach to improving convergence is to re-formulate the problem.
For example, different variational forms or different finite element basis
functions often lead to matrices with improved conditioning. Due to time
constraints this approach was not investigated.

                                                          
3 While the convergence of BiCGStab is known to be somewhat erratic, for both test problems the error
grew monotonically, which is unexpected. There could be a bug in the code. However, the BiCGStab code
was tested on other complex valued, non-symmetric, indefinite matrices and it always converged. Thus
more investigation is required.



2) Schur Complement

One possible approach for improving the convergence of Krylov methods
when applied to hybrid FEM-BEM matrices is to use the Schur
Complement. This approach is attractive because it takes advantage of the
sparse-dense structure of the matrix, and it does not require a radical re-
formulation of problem. We begin by writing the system of equations in
block form

(5)        A B
C D

x
x

y
y

L
NM

O
QP
L
NM

O
QP =

L
NM

O
QP

1

2

1

2

where A, B, and C are sparse blocks and D is a dense block. The subvector
x1 represents the internal unknowns and the subvector x2 represents the
boundary unknowns. We can express x2 in terms of y1 and y2 as
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and we can then write for an equation as x1
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In equation (7) the matrix S A BD C= − −1c h is the Schur Complement. The idea
is that the matrix D is small enough to be “inverted” directly and the sparse
system Sx b1 =  can be solved via a Krylov method. Using surface-to-volume
ratio arguments, the Schur Complement approach has a memory savings of
N2/3 compared to using a direct solver on the whole system Z x = y. As an
example, for a computer with 109 words of memory, the direct LU
approach restricts us to problems of order N~30,000 whereas with the
Schur Complement approach we can solve systems of order
N~5,000,000.

Of course it is necessary to investigate the conditioning of the Schur
Complement. If it is as ill-conditioned as the original Z matrix we have not
gained anything.

We begin by examining the spectrum of the complete Z matrix for problems
#1 and #2. The spectra are shown in Figures 5 and 6 below. The main point
is that the eigenvalues are not clustered. It is interesting to note that the ratio



max(abs(λ))/min(abs(λ)), which is an often (mis)used estimate of the
condition number, is 7.64e3 and 7.0e4 for Problem #1 and Problem #2,
respectively. According to this measure these problems are not ill-
conditioned. But it is obvious that the eigenvalues are far from being
clustered and this has a significant effect upon the convergence of iterative
methods.

We next examine the eigenvalue spectrum of the Schur Complement for
Problem #1 and Problem #2. These are shown, along with the original
spectrum, in Figures 7 and 8 below. The original spectrum is shown in blue,
the Schur Complement spectrum in red. Note that the eigenvalues are
clustered along the real axis. In fact, the spectrum of the Schur Complement
is comparable to that of the matrix A itself.



3) Results, Conclusions, and Issues

The following Krylov methods were applied to the Schur Complement
systems: BiCGStab, CGS, QMR, and GMRES. For both Problem #1 and
Problem #2, BiCGStab failed to converge. However the other methods
converged nicely. The results are shown in Figures 9 and 10 below.

For both problems the GMRES algorithm was ran with a restart interval of
100. In both cases the convergence of GMRES tapered off, which is
interesting because it is often considered “the best” method. It is a very
robust method, as indicated by the steady, but slow, convergence. The CGS
method on the other hand was quite erratic, but it ultimately gave us the
answer in the shortest amount of time. The QMR algorithm was in the
middle.

It is difficult to make conclusions based on this limited set of experiments.
While the Schur Complement approach works, it is far from a scalable
algorithm. It is important to note that the Schur Complement approach can
be used in conjunction with a fast multipole algorithm for the BEM [1]. Use
of a fast multipole algorithm for the evaluation of D-1 will save significant
amount of memory and reduce the cost of each iteration. However the
number of iterations is depended upon the conditioning of A, the discretized
Helmholtz operator. Hence more effort is required in the area of
preconditioning this operator.

To summarize:

•  Direct LU decomposition works, but the O(N2) memory usage and the
O(N3) operation count place a sever constraint on the size of the problem.

•  Standard Krylov methods will require much less memory than direct LU
decomposition. However, standard Krylov methods applied to two
example hybrid FEM-BEM matrices were painfully slow. A deeper
understanding of BEM and hybrid FEM-BEM is required to develop
preconditioners for accelerating Krylov methods.

•  The Schur Complement approach as described in this technical note is a
hybrid approach well suited for hybrid sparse-dense matrices. The Schur
Complement approach takes advantage of the block structure of the
matrix, resulting in a significantly memory savings compared with the
direct LU approach.



•  The Schur Complement approach significantly reduced the number of
Krylov iterations required for convergence. The eigenvalue spectrum of
the Schur Complement is comparable to that of the A matrix itself.
However, the approach is at best an O(N2) method. To reduce the
iteration count further a preconditioner for the A matrix is required.

•  The Schur Complement approach does not preclude the use of fast
multipole methods for the BEM. A fast multipole method will further
reduce memory usage and reduce the cost of each iteration.



4) The Software

In order to perform the computational experiments described above it was
necessary to actually write software. Rather than write an application-
specific “one-time-use-only” Schur Complement solver we decided to
develop an application-independent solver framework that could meet the
needs of EIGER and other unstructured-grid FEM-type codes for several
years. The solver framework was to have:

•  Support for both real-valued and complex-valued linear systems,
•  Support for a variety of matrix storage formats (including hybrid

formats),
•  A variety of different Krylov methods,
•  A variety of preconditioners,
•  A dense direct LU decomposition,
•  A sparse direct LU decomposition,
•  Distributed memory parallelism (i.e. MPI),
•  Extensibility – the ability to easily extend the framework to include new

types of matrices, new solvers, new preconditioners, etc.

While not complete, much progress was made towards the development of a
solver framework. We did not start from scratch; we began with the ISIS++
library developed by Sandia [5]. In Figure 11 we illustrate the class
hierarchy of the solver framework, annotating the initial ISIS++ classes, the
classes added this year, and possible future classes. Note that Figure 11
presents a “high-level” view of the framework, there are several “low-level”
classes that are not illustrated.



Figure 11. The class hierarchy of the solver framework. The basic
abstractions are Vectors, Matrices, Preconditioners, and Solvers. Future
abstractions will include eigenvalue solvers and non-linear equation solvers.

Vector Matrix EigenSolverPC

DenseSparse IterDirect

SeqV
DistV

SCRS
RsSCRS
DCRS

RsDCRS

Ident
Diag
SPAI

Hybrid
Shur

LPCK
SCLPCK SPOOLE

LPCK
SCLPCK

CG
CGS

CGNE
CGNR
QMR

GMRES

ARPACK

Base class Concrete class

Hybrid

Shur

Original

Added FY00

Added FY01

AMG
T.B.D

FMM



5) References

[1] J. Volakis, A. Chatterjee, L. Kempel, Finite Element Method for
Electromagnetics, IEEE Press, 1998.

[2] R. Sharpe, J. Grant, N. Champagne, et. al., “EIGER: electromagnetics
interactions generalized,” IEEE APS Symposium, Quebec, Canada, July 13-
17, 1997. UCRL-JC-130496.

[3] G. Golub, C. Van Loan, Matrix Computations, Johns Hopkins University
Press, 1989.

[4] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing,
1996.

[5] ISIS++ Reference Guide, Sandia Report SAND99-8231, April 1999.



Figure 3. Convergence of various Krylov methods on test problems #1. The
BiCGStab algorithm failed to converge. Diagonal scaling was employed.
The problem dimension was 3068.



Figure 4. Convergence of various Krylov methods on test problems #2. The
BiCGStab algorithm failed to converge. Diagonal scaling was employed.
The problem dimension was 2372.



Figure 5. Eigenvalue spectrum of the Z matrix for Problem #1.



Figure 6. Eigenvalue Spectrum of the Z matrix for Problem #2.



Figure 7. The spectrum of the Schur Complement vs. the spectrum of the
original Z matrix for Problem #1. The spectrum of the Schur Complement
resembles that of the FEM matrix A alone.



Figure 8. The spectrum of the Schur Complement vs. the spectrum of the
original Z matrix for Problem #2. The spectrum of the Schur Complement
resembles that of the FEM matrix A alone.



Figure 9. Converge of Schur Complement approach for Problem #1



Figure 10. Convergence of Schur Complement approach for Problem #2.


